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Overview. A significant hurdle confronts the software reuser attempting to se-

lect candidate components from a software repository - discriminating between

those components without resorting to inspection of the implementation(s). We

outline an approach to this problem based upon neural networks which avoids

requiring the repository administrators to define a conceptual closeness graph for

the classification vocabulary.

1 Introduction

Reuse has long been an accepted principlein many scientific disciplines. Biologists

use established laboratory instruments to record experimental results; chemists use

standardized measuring devices. Engineers design based upon the availability of

components that facilitate product development. It is unreasonable to expect an

electrical engineer to design and develop the transistor from first principles every

time one is required.

Software engineers, however, are frequently guilty of a comparable practice

in their discipline. The reasons for this are as varied as the environments in which

software is developed, but they usually include the following:

*To appear in NeuralNetuJorka and Pattern Recognition in Human Computer lnterfacea, R.
Beale and J. Findlay (eds.), Ellis Horwood Ltd., West Sussex, UK, clue out March, 1992.
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* a lack of development standards;

* the ¢to_ iaret_ted here syndrome;

• poor programming language support for the mechanical act of reuse;and

• poor support in identifying,catalogingland retrievingreuse candidates.

The firstthree items involve organization mentality,and willnot be ad-

dressed here.I We instead focus upon the finalitem in thislist,the nature of the

repositoryitself,and more specificallyupon the mechanisms provided for classifi-

cation and retrievalof components from the repbs_tory.

The complexity of non-trivialsoftware components and their supporting

documentation easilyqualifiesreuse as a "wicked" problem- frequentlyintractable

in both descriptionand solution.We describe an approach that we are currently

exploring for making classificationand retrievalmechanisms more efficientand

natural for the software reuser. This approach centers around the use of neural

networks in support of imprecise classificationand querying.

2 The Problem

A mature software repository can contain thousands of components, each with

its own specification,interface,and typically,itsown rocahularz/.Consider the

signatures presented in Figures i and 2 for a stack of integers and a queue of

integers,respectively.

Create: :==_Stack

Push: Stack x Integer==_ Stack

Pop: Stack _ Stack

Top: Stack _ Integer

Empty: Stack ==# Boolean

Figure 1: Signature of a Stack

1Concerning lan_age support - there are languages which readily support reuse, but they

must be available to the programmers. Consider for a moment the inertia exhibited by FOR-
TRAN and COBOL in commercial data processing. The very existence of such large bodies

of code in languages ill-suited for reuse acts as an inhibitor for the movement of organizations

towards bettersuitedlanguages.
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Create: _ Queue

Enqueue: Queue × Integer==_ Queue

Dequeue: Queue ==_Queue

Front: Queue _ Integer

Empty: Queue :_ Boolean

Figure 2: Signature of A Queue

These signatures are isomorphic up to renaming, and thus exemplify what

we have come to refer to as the rocab_dar_ problem. Software reusers implicitly

associate distinct semantics with particular names, for example, pop and enqueue.

Thus, by the choice of names, a component developer can mislead reusers as

to the semantics of components, or provide no means of discriminating between

components. Figure 3, for example, appears to be equally applicable as a signature

for both stack and queue, primarily due to the neutral nature of the names used.

Create: _ Sequence

Insert: Sequence x Integer :=_ Sequence

Remove: Sequence _ Sequence

Current: Sequence =:_ Integer

Empty: Sequence _ Boolean

Figure 3: Signature of a Sequence

3 Software Classification

Retrieval mechanisms for software repositories have traditionally provided some

sort of classification structure in support of user queries. Keyword-based retrieval

is perhaps the most common of these classification structures, but keywords are

ill-suited to domains with rich structure and complex semantics. This section lays

out the principle representationai proble_ in software classification and selected
solutions to them.



3.1 Literary Warrant

Library scientists use literar_ warrant for the classification of texts. Representative

samples drawn from the set of works generate a set of descriptive terms, which

in turn generate a classification of the works as a whole. The adequacy of the

classification system hinges a great deal on the initial choice of samples.

With appropriate tools, literary warrant in software need not restrict itself

to a sample of the body of works, l_ther, it can examine each of the individual

works in turn, providing vocabularies for each of them. This may indeed be

required in repositories where the component coverage in a particular area is sparse.

3.2 Conceptual Closeness

TheVocabu affo  e - bU It ihrou  ry w rrant typicallycontainsa
great deal of semantic overlap words whose meanings are the same, or at least

similar. For instance, two components, one implementing a stack and the other

a queue might both be characterized with the word insert, corresponding to push

and enqueue, respectively, as discussed in section 2.

Synonym ambigulty is Commonly resolved through the construction of a

restricted vocabulary, tightly controlled by the repository administrators. Repos-

itory users must learn this restricted vocabulary, or rely upon the assistance of

consultants already familiar with it. It is rarely the case, however, that the choice

is between two synonyms. More typically it is between words which have similar,

but distinct, meanings (e.g., insert, push, and enqueue, as above).

3.3 Algebraic Specification

While not really a classification technique, algebraic specification techniques (e.g.,

[GH78]) partially (and unintentionally) overcome the vocabulary problem through

inclusion of behavioral axioms into the specification. The main objection to the use

of algebraic specifications in reuse is the need to actually urrite and comprehend

the specifications. The traditional examples in the literature rarely exceed the

complexity of the above Figures. Also, algebraic techniques poorly address issues

such as performance and concurrency. : : :
= .

A repository containing algebraic specifications depends upon the expertise

of the reusers browsing the repository; small repositor/es are easily understood

whereas it is unreasonable to require a reuser to examine all components in a

large repository for suitability.
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3.4 Basic Faceted Classification

Basic facetedclassificationbegins by using domain analysis(aka literarywarrant)

"to derivefaceted classificationschemes of'domaln specificobjects._ The classifier

not only derivesterms for grouping, but also identifiesa vocabulary that serves

as the values that populate those groups. From the software perspective,the

groupings, or facetsbecome a taxonomy for the software.

Prieto-D_az and Freeman identifiedsix facets:function,object, medium,

system type, functionalarea, and setting [PDF87]. Each software component in

the repository has a value assigned for each of these facets.The software reuser

locates software components by specifying facet values that are descriptiveof

the software desired. In the event that a given user query has no matches in

the repository,the query may be relaxed by wild-carding particularfacetsin the

query, thereby generalizingit.

The primary drawback in this approach isthe flatnessand homogeneity

of the classificationstructure.A general-purpose reuse system might contain not

only reusable components, but also design documents, formal specifications,and

perhaps vendor product information. Basic faceted classificationcreates a single

tuple space for all entries,resultingin numerous facets,tuples with many _not

appllcable_ entriesfor those facets,and frequent wildcarding in user queries.

A number of reuse repository projects have incorporated faceted classifi-

cation as a retrievalmechanism (e.g.,[Gue87][Atk]),but they primarily address

the vocabulary problem through s keyword control board, charged with creating

a controlledvocabulary for classification.

Gagliano, et. al. computed conceptual closeness measures to define a

semantic distance between two facetvalues [GOF+88]. The two principlelimita-

tions to thisapproach are the staticnature of the distance metrics and the lack

of inter-facetdependencies; each of the facetshad itsown closenessmatrix.

3.5 Lattice-Based Faceted Classification

Eichmann and Atkins extended basic faceted classificationby incorporating a

latticeas the principlestructuringmechanism in the classificationscheme [EAg0].

As shown in Figure 4, there are two major sublatticesmaking up the overall

lattice.
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Function Object Setting

Facet tu )le
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Figure 4: The Type Lattice

On the left is the subLattice comprised of sets of facet values (for clarity,

shown here with only three facets), partially ordered by the subset relation. The

Facet D vertex in the lattice represents the empty facet set, while the Facet vertex

represents the set of all facet wlues in the classification scheme. Each member of

the power set of all facet values falls somewhere within this sublattice.

On the right is the tuple subLattice, containing facet set components, and

partinUy ordered by the subtype relztion [Eie89]. The vertex denotes the empty

tuple. The tuple vertex denotes the tuple containing all possible facet components,

with each component containing nil the values for that facet. Adding facet values

to a component or adding a new component to a tuple instance moves the tuple

instance down through the lattice.

Queries to a repository SUpporting lattice-based faceted classification are

similar to those to one supporting basic faceted classification, with two important

distinctions - query tuples can mention as many or as few facets as the reuser

wishes, thereby avoiding the need for wildcarding, and classifiers can similarly

classify a given component with as many or as few facets as are needed for precise

characterization of the compon en_t; _ _

Lattice'based faceted classification avoids conceptual closeness issues through

the specification of sets of facet values in the classification of components. If there

are a number of semantically close facet values that all characterize the compo-

nent, all are included in the facet instance for that component. This avoids the

need to generate closeness metrics for facet values, but it also may result in reuser

confusion about just what the component does.
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3.6 Towards Adaptive Classification and Retrieval

The principle failing in _the methods described so far is the static nature of the

classification. Once a component ha_ been classified, it remains unchanged until
the repository administrators see fit to change it. This is unllkely to occur unless

those same administrators closely track reuser retrieval success, and more impor-

tantly, retrieval fa//ure - particularly in those cases where there are components

in the repository matching reuser requirements, but those components were not
identified during the query session.

Manual adjustment of closeness metrics becomes increasingly unreasonable

as the scale of the repository increases. The number of connections in the con-

ceptual graph is combinatoriaUy explosive. The principle design goal in our work

is the creation of an adaptive query mechanism - one capable of altering its be-
havior based upon implicit user feedback. This feedback appears in two guises;

failed queries, addressed by widening the scope of the query; and reuser refusals,

cases where candidate components were presented to the reuser, but not selected

for retrieval. The lattice provides a nice structure for the former, but a different
approach is required for the latter.

4 Our Approach

We are currently designing a new retrieval mechanism using previous work de-

scribed in [EA90] as a starting point, and employing neural networks to address

the vocabulary and refusal problems. The motivations behind using neural net-
works include:

Associative Retrieval from Noisy and Incomplete Cues: Traditional

methods for component retrieval are based on strict pattern matching meth-

ods such as unification. In other words, the query should contain exact infor-

mation about the component(s) inthe repository. Since exact information

about components is usually not known, queries fall in cases where exact

matching does not occur. Associative retrieval based on neural networks

uses relaxation, retrieving components based on partial/approximate/best

matches. This is sometimes referred to as data fault tolerance and is ideally

suited for our problem domain.

Classification and Optimization by Adaptation: In approaches using

the conceptual closeness measure, the problem of defining correlations be-

tween various components and assigning a numerical correlation value rests

w



upon the designer or the administrator of the repository. Designers idiosyn-

craticaUy arrive at these correlations and their values, which may not be

appropriate from the perspective of the software retriever/reuser. It is our

belief that the best way to arrive at these correlations and their values is for

the system to learn them in responding to user queries.

We also intend to use another adaptation strategy for optimizing the re-

triewal of similar repetitive queries. Since in most situations, reusers repeat-

edly issue similar queries, the system will adapt to these queries by weight

adjustment. The weight adjustment will settle the relaxation process quickly

in response to these repetitive queries and hence result in faster retrieval.

The effecthere issimilarto that of Cachi_quentiy issued queries.Note,

however, that once the system has learned that two concepts are conceptu-

allyclose,we want itto remember this,irrespectiveof how often the reusers

inquireabout it.

Massive Parallelism: The neurocomputing paradigm ischaracterized by

asynchronous, massivell./parallel, simple computations. Since neural net-

works are rrmssivelyparallel,retrievalfrom large repositoriesis possible,

using the fastassociativesearch techniques that are natural and inherent in

these networks.

5 System Architecture

In thissection,we describesome of the potentialneural-network architecturesand

discuss theirstrengths and limitationsin employing them for our task.

5.1 Hopfield Networks

These networks can be used as content-addressableor associativememories. Ini-

tiallythe weights in the network are set using representative samples from all

the exemplar classes. After this initialization, the input pattern I is presented to

the network. The network then iterates and Converges to a output. This output

represents the exemplar class which matches the input pattern best.

Although this network has many properties that are desirable for our sys-

tem, some of the seriouslimitationsin our context include:

I. The networks have limitedcapacity [Lip87]and may converge to novel spu-

rlous patterns.
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2. They result in unstable exemplar patterns if many bits are shared among

multiple exemplar patterns.

3. There are no algorithms to incrementally train these networks, i.e., to adjust

the initial weights in s manner that creates a specific alteration in subsequent

query responses. This is important for our application, since we seek an

architecture capable of adapting over time to user feedback.

5.2 Supervised Learning Algorithms

Many good supervisedlearningalgorithms exist,includingbackpropagation [RI'IW86],

cascade correlationand others,but they cannot be used in thiscontext because

our problern requiresan unsupervised learningalgorithm. Hence, we are investi-

gating unsupervised learning architectures,such as Adaptive Resonance Theory

(ART) [Gro88].

5.3 ART

ART belongs to a class of learning architecturesknown as competitive learning

models [Gro88][CG88]. The competitive learningmodels are usually characterized

by a network consistingof two layersLI and L2. The input pattern I isfed into

layerLI where itisnormalized. The normalized input isfed forward to layerL2

through the weighted interconnectionlinksthat forms an adaptive filter.Layer

L2 isorganized as a winner-take-allnetwork [FB82][Srigl][BSDg0]. The network

layerL_ isusuallyorganized as a mutually inhibitorynetwork wherein each unit in

the network inhibitsevery other unit in the network through a value proportional

to the strength of itsactivation.Layer L_ has the task of selectingthe network

node a,,,=,receivingthe maximum totalinput from L _. The node a,,,=issaid to

clusteror code the input pattern I.

In the ART system the input pattern I isfed in to the lower layerLI. This

input isnormalized and isfed forward to layerL2. This resultsin a network node

n,,,.,of layer L2 being selectedby virtue of it having the maximum activation

value among allthe nodes in the layer.This node n,,_. representsthe hypothesis

H put forthby the network about the particularclassificationof the input I. Now

a rnatchir_gphase occurs wherein the hypothesis H and the input I are matched,

with the qualityof the required match controUed by the vigilanceparameter.

Ifthe quality of match isworse than the value specifiedin the vigilance

parameter, a mismatch occurs and the layerL_ isresetthereby deactivatingnode

r_,_,.The input I activatesanother node and the above process recurs,comparing

another hypothesis or forming a new hypothesis about the input pattern I. New
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hypotheses are formed by learning new classes and recruiting new uncommitted

nodes to represent these classes.

Some of the properties of ART that makes it an potential choice for our

task include

1. Real-time (on-line) learning;

2. Unsupervised learning;

3. Fast adaptive search for best match as opposed to strict match; and

4. Variable error criterion wl_ich can be fine-tuned by appropriately setting the

_g_ance parameter.

-However, one of the limitations of ART for our particular task arises from

its inability to distinguish the queries for particular components by users, from the

component classes which form the exemplar classes. Another limitation arises from

the fact that only one exemplar class is chosen at a time which represents the bes_

match, rather than choosing a collection of close matches for reuser consideration.

Our proposed system will operate in two phases. The first, loading phase

populates the repository with components. The second, retr_era/phase identi-

ties candidate components in response to user queries. The distinguishing factor

between the two phases is the _ue Of the vigilance:parameter. In the loading

phase, the system will employ a high vigilance value. This ensures the forma-

tion of separate categories for each of the components in the repository. In the

retrieval phase, the system wiU employ a low vigilance value, thereby retrieving

components that best match the query.

We also intend to modify the winner-take-all network layer of the ART to

choose k winners instead of one. This is extremely useful in our context because

there may be multiple software components which meet the user specifications.

The software reuser may select a subset rn _< k of these components based upon

requirements. The system sh0uld associate these rn components with the user

query and retrieve them for subsequent queries having similar input specifications.

This can be achieved by associating small initial weights on the lateral Iin_o_f_the

winner-take-_aI1netw0rk and modifying them appropriately based on user feedback

(i.e., reuser refusals).

10

I

W

m

8
J

g

!

w

J

!

i

I

I

m
w

I



6 Discussion
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6.1 Our Placement in the User-Based Framework

Discussions in the workshop placed our work in the region of user intention/ no

feedback in the user-based framework. Upon further reflection,we have slightly

altered our perspective. While this placement is certainlyproper in the strict

context of a singleuser query, it is not accurate in the broader context of a

community of users accessingthe repositoryover time.

As the system isrewarded for providing true hitsto users and punished for

providing falsehits,there isa consensual drift,providing feedback for subsequent

user queries.Thus, viewing the amortized effectof user behavior, rather than the

immediate effectof user behavior,our system shiftsdown towards passive obser-

vation and lefttowards immediate feedback._ The net resultis that our system

occupies two distinctpoints in the framework, one for the semantics involved in

the immediate query query and one for the semantics involved in the aggregate

behavior of the repositoryover time.

6.2 The Relationship to Gestural Recognition

Beale [BE],Rubine [Rub],and Zhao [Zha],the other occupants of the Novel Input

category of the task-based framework, respectively address sign language recogni-

tion, drawing geometric figures, and diagram editing - all interpreting imprecise

human gestures and mapping them to a precise application domain. They all

address the inability of humans to accurately repeat physical movement.

Our mechanism, on the other hand, accepts a precisely phrased user query

and adapts it to an imprecise application domain. Ignoring the issue of poor

typing skills, our user community can accurately repeat a given user intention

(query) any number of times, and we know exactly what that intention is. The

challenge in our domain occurs when that intention has no exact match in the

system. It's similar to Rubine's system offering to draw a square or a hexagram

(or perhaps even a five-sided star) when the user gestured a pentagram, but the

system had no training in pentagram gestures.

_or more precisely, non-immediate feedback.
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6.3 Directions for Future Research

Options available to us at this point in our work lie in two general directions,

further extending repository semantics and exploring the _pplication of neural

networks to these types of application domains ...... _ ....

With respect to the former, the classification scheme described here is

restricted to facets and tuples containing facets. In other work, the classification

scheme was firstextended to include signatures for abstract data types [Eicgla]

and then further extended to support axioms in a second phase in the query

process [Eic91b]. A merger of that work with that described here has appeal -

particularlythe imprecise matching of signatures._ _ :

Wlth respect to the latter,we are interestedin studying the tradeoffs

between individual user adaptation versus the consensual adaptation described

above. These two actually are the extremes in a continuum-o_ user groupings.

This coupled with an additionaldimension of user expertiseforms a state space of

user behavior where the system might more heavily weight certainsemantic con-

nections forexperts and other semantic connections fornovices. This willrequire

the development of new algorithms for relaxation.

7 Conclusions

Our approach extends previous work in component retrievalby incrementally

adapting the conceptual closenessweights based upon actual use, rather than an

administrator'sassumptions. Neural networksprovlde a quite suitableframework

for supporting thisadaptation. Reuse repositoryretrievalprovides a unique and

challengingapplicationdomain for neural networking techniques. _ .....

• This approach _iTec_i:y adds an add_ional dimension to the conceptual

space formed by the type lattice.This additionaldimension allows traversa!from

one vertex to another iislngt-heaciapted closenesswdg_s derived from User_ac-

tivity,rather than the partialorders used in deigning:the lattice.The resulting

retrievalmechanism supports both well-definedlattlce-c0nstrainedqueries and

ill-delinedneural-network cons_ralned queries in the Same framework.
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